Journal of Acute Medicine 9(2): 39-48, 2019 DOI:10.6705/j.jacme.201906_9(2).0001 Original Article

Role of Internal Jugular Vein Ultrasound Measurements in the Assessment of Central Venous Pressure in Spontaneously Breathing Patients: A Systematic Review

Nicola Parenti^{1,*}, Marco Scalese², Carmela Palazzi¹, Federica Agrusta¹, Jane Cahill³, Giancarlo Agnelli⁴

¹University of Modena e Reggio Emilia, Modena, Italy

²Institute of Clinical Physiology-Italian National Research Council (IFC-CNR), Pisa, Italy

³School of Healthcare, University of Leeds, Leeds, UK

⁴Cardiovascular Diseases, University of Perugia, Perugia, Italy

Background: Few studies have tested the role of the internal jugular vein (IJV) ultrasonographic (US) diameters in the assessment of central venous pressure (CVP) in spontaneously breathing patients. No review or meta-analysis is currently available on the role of IJV assessment in this setting. The aim of this systematic review is to check the reliability and accuracy of IJV US diameters in predicting CVP and to evaluate its correlation with CVP in spontaneously breathing patients.

Methods: This systematic review was based on the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) guidelines. We included studies on the accuracy and reliability of the IJV ultrasound measures and studies exploring its correlation with CVP in adult spontaneously breathing patients. The studies' report quality was assessed by Standards for Reporting of Diagnostic Accuracy (STARD) and Quality Assessment of Diagnostic Accuracy Studies (QUADAS)-2 scales.

Results: A total of five studies was eligible for final analysis. The studies on IJV ultrasound measures showed a good quality in reporting. The anterior-posterior diameter maximum of IJV (AP-IJV Dmax) showed the best correlation with the CVP with a good inter-rater reliability and validity in predicting CVP. All measures showed good inter-rater reliability and validity in predicting CVP, but only the AP-IJV Dmax showed good correlation with CVP.

Conclusions: The AP-IJV Dmax could be a potential surrogate of CVP because of its good reliability and validity in predicting CVP value and its fair-moderate correlation with CVP. Anyway, further research should confirm these conclusions.

Key words: systematic review, internal jugular vein ultrasound, reliability, validity

Introduction

The assessment of intravascular volume status (IVS) is one of the great challenges in the care of critically ill patients, particularly if presenting with shock. An accurate IVS evaluation is essential in this setting to properly manage fluid therapy and re-

sponsiveness to treatment. Vital signs, biochemical markers, invasive and non-invasive tests are all the available tools to monitor IVS, even though according to many experts dynamic measures better predict fluid responsiveness.¹⁻⁴ Although the central venous pressure (CVP) does not seem to predict the volume status,⁴ many studies used it as a gold standard to

Received: February 9, 2018; Revised: June 28, 2018 (3rd); Accepted: July 4, 2018.

^{*}Corresponding author: Nicola Parenti, MD, University of Modena e Reggio Emilia, Largo del Pozzo, 71, 41125 Modena MO, Italy. E-mail: nipar71@yahoo.it

manage fluid therapy. However, the changes of CVP values should not be used to test the fluid responsiveness.⁴

In the last years, the ultrasound has been suggested as a valid method to guide the diagnosis and therapy in shock patients.³ Among the ultrasound measures used as IVS surrogates, the diameter of inferior vena cava has been proposed as a feasible measure of fluid responsiveness in critically ill patients.²⁻⁶ The ultrasound assessment of IVC diameter and respiratory variations was included in the 2008 American College of Emergency Physicians (ACEP) Policy Statement on Emergency Ultrasound Guidelines as a tool for IVS and CVP evaluation. The value of this assessment is supported by the pathophysiological observation that total body fluid volume correlate with absolute IVC diameter, while the variations in intra-thoracic and intra-abdominal pressure during spontaneous breathing are able to induce IVC collapse and dilatation with inspiration and exhalation, respectively. The 2008 ACEP Policy Statement on Emergency Ultrasound Guidelines suggest measuring IVC inspiratory and expiratory diameter at 2 cm from its junction with the right atrium using a low-frequency probe (3.5-5 MHz) at the trans-abdominal subcostal view. The degree of inspiratory and expiratory diameters change is generally expressed as a percentage by the caval or IVC collapse index (CI) obtained by the IVC maximum diameter (IVC Dmax) minus the minimum (IVC Dmin) diameter of the IVC divided by the maximum diameter: IVC-CI = (IVC Dmax - IVC)Dmin)/IVC Dmax. All these measures are obtained during one respiratory cycle (http://www.acep.org).

According to the ACEP Policy Statement on Emergency Ultrasound Guidelines, a "hypovolemic" patient presented a small IVC diameter and an IVC CI greater than 50%. In a recent review, Schmidt et al. suggested that a very small IVC diameter and a small and hyperkinetic left ventricle could be predictive of shock.³

Several studies have tested the relationship between the ultrasound measure of IVC diameters and the CVP,⁷⁻¹¹ but few reports are available in spontaneously breathing patients.^{9,12,13} In particular, the IVC Dmax, IVC Dmin, the IVC distensibility, or caval index (IVC Dmax – IVC Dmin/IVC Dmax × 100, expressed as a percentage), IVC ratio (IVC maximum transversal/IVC maximum longitudinal) have been evaluated to estimate CVP mostly in spontaneously breathing critically ill patients bedside, during their admission to the emergency department or in patients undergoing right heart catheterization, but only few studies describe their scanning protocol and the inter-rater reliability.^{9,12-17}

To our knowledge, few reports have been published on the role of internal jugular vein (IJV) ultrasonographic (US) measures as a tool to estimate the volume status and fluid responsiveness and to test their relation with the CVP.9,11,18-20 The IJV ultrasound measures should be obtained according to the methods described by previous researchers9,11,18 with the patient in the supine position and a high frequency (5-10 MHz, linear array) linear transducer lightly placed on the neck in a transverse plane over the IJV 2 cm above the clavicle. Using a B-mode cine loop is possible to obtain the anterior-posterior of IJV (AP-IJV) and the transverse diameter of IJV (T-IJV). The following ultrasound measures of IJV have been tested: AP-IJV Dmax; the IJV area (maximal area in transversal section); the IJV ratio: IJV maximum transversal/IJV maximum longitudinal.9,10,18-20

To summarize, very few reports have tested the effectiveness of IJV ultrasound measures among spontaneously breathing patients.

To our there are no reviews on the role of the IJV in the assessment of volume status. Moreover, the conclusions of the reports published on the reliability, validity, and correlation with the CVP of ultrasound measures of IVC and IJV are divergent. For these reasons, we decided to conduct this systematic review.

The primary aim of this review was to check the available studies exploring one of the following measures: (1) the reliability of IJV ultrasound measures; (2) the validity of IJV ultrasound measures in predicting CVP; (3) the IJV ultrasound measures correlation with the CVP in spontaneously breathing critically ill patients. Another purpose was to assess the quality of selected studies published on this topic.

Methods

This systematic review was conducted according to the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) statement for reporting systematic reviews and meta-analyses.²¹ The flow diagram in Fig. 1 schematically shows each step of the review process.

A broad search of the literature was initially performed by an expert in literature searching using

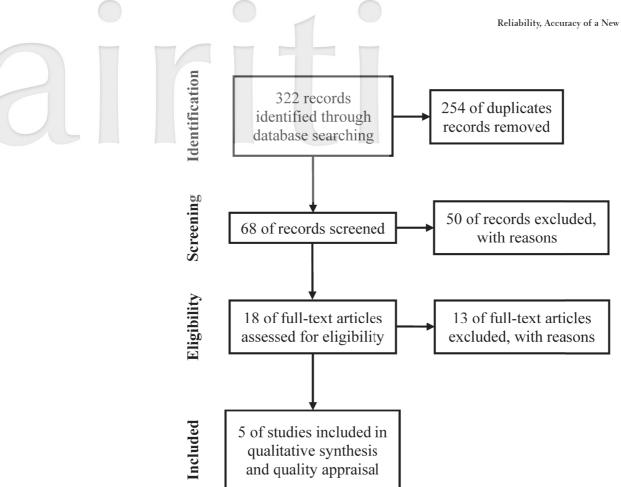


Fig. 1. Review selection process.

PubMed, Cochrane Library, Web of Science, and Scopus. All the articles available, starting from the year 1941 until the time of search (June 30, 2015), were considered.

An update of the literature search has been conducted from the June 1, 2016.

The literature search strategy and criteria are shown in Supplement 1.

A total of 322 records was retrieved (Fig. 1).

Three researchers independently and in a blinded manner reviewed the four lists from the literature database (PubMed, Cochrane Library, Web of Science, and Scopus), and by the records' title and abstract inspection, removed 254 duplicates and other 50 reports because they were not relevant to the aims of the review.

Eighteen full text articles were finally selected and independently reviewed by three researchers to identify those potentially relevant.

Only five studies met the inclusion criteria for the systematic review, exploring the correlation of IJV ultrasound measures with CVP and/or accuracy and/ or reliability of US exams. The reasons for exclusion were justified in each phase of the selection.

An appraisal of the reporting quality of the five remaining studies selected for the analysis, was independently conducted by three authors using the Standards for Reporting of Diagnostic Accuracy (STARD)²² and the Quality Assessment of Diagnostic Accuracy Studies (QUADAS)-2²³ guidelines.

A narrative summary was used to synthetize the data to provide a narrative description and ordering of the evidence, with commentary and interpretation.

The three reviewers' yes/no level of agreement for each study was entered into an Excel 2010 (Microsoft Corporation, Redmond, WA, USA) spreadsheet, and Fleiss' kappa for observed agreement was performed. We obtained a Fleiss' kappa score of $\kappa = 0.72$, equating to a high level of agreement between the raters.

Outcome measures were the following: (1) inter-rater and intra-rater reliability coefficients (tested using kappa coefficient, weighted and/or un-weighted, intraclass correlation coefficient, Pearson correlation coefficient, and Spearman's rank correlation coefficient); Parenti et al.

(2) the validity of IJV ultrasound measures in predicting CVP (tested using the following accuracy indexes: accuracy, sensitivity, specificity measure; receiver operator characteristic (ROC) curves with areas under the ROC curves [AUCs]). The prediction, measured by AUC (ROC curve), is the ability of the test (IVC and IJV ultrasound) to correctly classify those with and without the CVP (i.e., CVP < 10 mmHg = 0; CVP > 10 mmHg = 1); (3) coefficient of determination of regression analysis (R^2); Pearson correlation coefficients (r) or Spearman rank correlation coefficients (rho). Correlation is a statistical technique that can show whether and how strongly pairs of continuous variables (i.e., IJV ultrasound diameters or CVP values) are related.

Inclusion criteria were studies which tested the following measures: (1) the reliability of IJV ultrasound measures; (2) the validity of IJV ultrasound measures in predicting CVP; (3) the IJV ultrasound measures' correlation with the CVP in spontaneously breathing critically ill patients.

We included studies conducted on all ages of adult patients (> 18 years) in all languages.

We excluded the duplicate studies.

Results

Out of a total pool of 322 collected records, five $^{9,11,18-20}$ studies were considered eligible for the analysis.

In this review, 233 patients have been enrolled, with an age mean range from 51 to 66 years; a percentage of male range from 45 to 63% (Table 1).

The study conducted by Prekker et al.⁹ tested IVC and IJV ultrasound measures.

Many studies on IJV ultrasound measures showed good quality in reporting according to STARD guidelines (Fig. 2) and all records had similar quality according to QUADAS-2 tool (Table 2).

Among the reports included: four tested the correlation with CVP of IJV ultrasound diameters; five tested IJV validity in predicting CVP; three the reliability of IJV. All the studies on IJV enrolled spontaneously breathing patients.

The following ultrasound measures of IJV have been tested in the included studies: AP-IJV diameter (two studies); IJV area (two studies); IJV ratio (two studies).

The comparison of effectiveness of IJV ultrasound measures is shown in Table 3.

There are no reports on the reliability of IJV ratio (Table 3). The AP-IJV Dmax showed the best correlation with the CVP: r = 0.82 (Table 3).

All ultrasound measures of IJV showed good validity in predicting CVP; the AP-IJV Dmax and IJV area showed good inter-rater reliability.

Discussion

Few studies have been published on the relationship between the ultrasound measures of IJV diameters and the CVP as well as their reliability.

In this systematic review, the AP-IJV Dmax and IJV area showed the best correlation with the CVP, the best validity in predicting its values and a very good inter-rater reliability.

However, we should be prudent when we use the CVP and the IJV ultrasound measures to manage fluid resuscitation because a recent meta-analysis⁴ showed that the CVP does not seem to predict the volume status.

Furthermore, we should be cautious in interpreting the IJV ultrasound measures in some clinical contexts.

For example in patients with cor pulmonale, a high IJV diameter and a reduced caval index does not exclude fluid responsiveness.

In this clinical context, even CVP has the same problems of IJV, of being unreliable in predicting fluid responsiveness. For this reason, the specificity of IJV would have been lower if considering prediction of fluid responsiveness compared to CVP.

Our findings suggest that the AP-IJV Dmax and its area could be two new indexes useful in the management of fluid in resuscitation. In fact, both show good reliability and validity in predicting CVP values. Few recommend that further research should confirm these conclusions because existing research on these ultrasound measures is insufficient.

In particular further studies are needed assessing IJV in predicting fluid responsiveness.

To our knowledge, there are not reviews on the role of IJV ultrasound measures in the assessment of volume status and fluid responsiveness in critically ill patients.

However, it is difficult to compare the results of studies collected on this topic because of their different designs and statistical methodologies used to test the outcomes.

In our opinion, because the authors of studies included have chosen different thresholds to test the

Outcome Results Conclusion ROC curves R? = 0.21 for UV ratio ^b Poorly correlation Linear regression analysis Accuracy of IJV in predicting CVP < 10 Moderate validity Intra and inter observer 0.89) Intra and inter-rater Poorly correlation Intra and inter observer 0.80) UV ratio ^b Poorly correlation 0.90) 0.90) UV and UT and intra-rater Poorly correlation 0.90) 0.90) UV ratio ^b Dorly correlation 0.90) 0.90) UV and UT and intra-rater Poorly correlation 0.90) 0.90) UV and UT and intra-rater Poorly correlation 0.91 DV and the end of Expination and If AP-IJV diameter < 7 0.91 UV interclass correlation of GVP Moderate validity 0.91 UV area ^c : r = 0.82 and 0.69 Moderate validity 0.91 UV interclass correlation of GVP Moderate validity 0.91 UV interclass correlation of GVP Moderate validity 0.91 UV interclass correlation of GVP Moderatevalidity 0.92 <t< th=""><th>US measures Outcome Results Conclusion IJV ratio^b ROC curves R² = 0.21 for JJV ratio⁵ Poorly correlation IJV ratio^b ROC curves R² = 0.21 for JJV ratio⁵ Poorly correlation IJV ratio^b Intra and inter observer Accuracy of JJV in predicting CVP < 10 Moderate validity IJV ratio^b Intra and inter observer Accuracy of JJV in predicting CVP < 8 Intra and inter observer Resumpty AP-IJV Intra and inter observer Resumpty 0.96) IIV ratio⁵ accurately for other observer AP-IJV Inter-arter reliability Outcome 84 (95% CI = 0.52- 11V ratio⁵ accurately AP-IJV Inter-arter reliability Outcome 0.96) mmHg. AUC = 0.34 (95% CI = 0.72- IJV artea⁶ Correlation of CVP and IJV supine Reliability coclelent 11V rate⁵ accurately AP-IJV Inter-arter reliability IV ratio⁵ accurately mmHen CVP < 10 cmH₃,0 IJV artea⁶ Correlation of CVP and UJV supine Minten CVP < 10 cmH₃,0 mmHen CVP < 10 cmH₃,0 IJV artea⁶ Significant correlation of atterior Significant</th><th>Author Study dasger Tagget population US messares Outcome Results Conclusion Acoulty correlation Predicter al., Cross-s 41 dutt UV ratio ROC curves R = 0.11 for UV ratio Proofy correlation USA bernhung patients Inter regression analysis R-inter regression analysis R = 0.21 for UV ratio Proofy correlation USA percentient H adutt UV ratio ROC curves R = 0.21 Got UV ratio Proofy correlation 0001 derivational spontaneously UV ratio Recursey of UV in predicting CVP < 8 Inter and inter observe Residenting correlation 0001 derivational spontaneously UV ratio 0.90 UV ratio Correlation of CVP and UV significant UV ratio Total UV ratio 0001 derivational prontaneously UV ratio Stortacy of UV in and inter observe UV ratio Total UV ratio 0001 derivational derivation of CVP and UV significant correlation of CVP and UV significant UV ratio Total UV ratio Total UV ratio 0001 derivation of</th><th>Author Study dasge Target population US messures Outcome Realist Conclusion Realist Conclusion Realist Conclusion Conclusion Conclusion Realist Conclusion Realist Conclusion Realist Conclusion Realist Conclusion Prody correlation PUSA Ectional prontanously Linear regression analysis Recurrany of LV in predicting CVP < 10 Moderare validy Prody correlation USA Reservational spontaneously Linear regression analysis Recurrany of LV in predicting CVP < 10 Moderare validy 000° Reservational spontaneously LV ratio Bara and inter observer 0.81 UV ratio Doily observational Doily observational Doily observational Doily observational Doily observational Doily conclusion Doily observational D</th><th></th><th></th><th></th><th></th><th>Reliability, Accuracy of a N</th></t<>	US measures Outcome Results Conclusion IJV ratio ^b ROC curves R ² = 0.21 for JJV ratio ⁵ Poorly correlation IJV ratio ^b ROC curves R ² = 0.21 for JJV ratio ⁵ Poorly correlation IJV ratio ^b Intra and inter observer Accuracy of JJV in predicting CVP < 10 Moderate validity IJV ratio ^b Intra and inter observer Accuracy of JJV in predicting CVP < 8 Intra and inter observer Resumpty AP-IJV Intra and inter observer Resumpty 0.96) IIV ratio ⁵ accurately for other observer AP-IJV Inter-arter reliability Outcome 84 (95% CI = 0.52- 11V ratio ⁵ accurately AP-IJV Inter-arter reliability Outcome 0.96) mmHg. AUC = 0.34 (95% CI = 0.72- IJV artea ⁶ Correlation of CVP and IJV supine Reliability coclelent 11V rate ⁵ accurately AP-IJV Inter-arter reliability IV ratio ⁵ accurately mmHen CVP < 10 cmH ₃ ,0 IJV artea ⁶ Correlation of CVP and UJV supine Minten CVP < 10 cmH ₃ ,0 mmHen CVP < 10 cmH ₃ ,0 IJV artea ⁶ Significant correlation of atterior Significant	Author Study dasger Tagget population US messares Outcome Results Conclusion Acoulty correlation Predicter al., Cross-s 41 dutt UV ratio ROC curves R = 0.11 for UV ratio Proofy correlation USA bernhung patients Inter regression analysis R-inter regression analysis R = 0.21 for UV ratio Proofy correlation USA percentient H adutt UV ratio ROC curves R = 0.21 Got UV ratio Proofy correlation 0001 derivational spontaneously UV ratio Recursey of UV in predicting CVP < 8 Inter and inter observe Residenting correlation 0001 derivational spontaneously UV ratio 0.90 UV ratio Correlation of CVP and UV significant UV ratio Total UV ratio 0001 derivational prontaneously UV ratio Stortacy of UV in and inter observe UV ratio Total UV ratio 0001 derivational derivation of CVP and UV significant correlation of CVP and UV significant UV ratio Total UV ratio Total UV ratio 0001 derivation of	Author Study dasge Target population US messures Outcome Realist Conclusion Realist Conclusion Realist Conclusion Conclusion Conclusion Realist Conclusion Realist Conclusion Realist Conclusion Realist Conclusion Prody correlation PUSA Ectional prontanously Linear regression analysis Recurrany of LV in predicting CVP < 10 Moderare validy Prody correlation USA Reservational spontaneously Linear regression analysis Recurrany of LV in predicting CVP < 10 Moderare validy 000° Reservational spontaneously LV ratio Bara and inter observer 0.81 UV ratio Doily observational Doily observational Doily observational Doily observational Doily observational Doily conclusion Doily observational D					Reliability, Accuracy of a N
OutcomeResultsROC curves $R^2 = 0.21$ for IJV ratio Linear regression analysis $R^2 = 0.21$ for IJV ratio accuracy of IJV in predicting CVP < 10 mmHg: AUC = 0.76 (95% CI = 0.65- 0.89)Intra and inter observer $Accuracy of IJV$ in predicting CVP < 8 agreement (Bland-Altman mHg: AUC = 0.84 (95% CI = 0.72- 0.96)Inter-rater reliability 0.96 ROC curves $Accuracy of IJV$ in predicting CVP < 8 agreement (Bland-Altman mHg: AUC = 0.84 (95% CI = 0.72- 0.96)Inter-rater reliability $O.96$ ROC curves $Accuracy of IJV$ in predicting CVP < $Accuracy of IJVInter-rater reliabilityO.96ROC curvesD.96Inter-rater reliabilityO.96ROC curvesD.96ROC curvesD.96ROC curvesD.96ROC curvesD.92ROC curvesD.93ROC curvesD.92ROC curvesD.92ROC curvesD.93ROC curvesD.93ROC curves$	US measuresOutcomeResultsIJV ratiobROC curves $\mathbb{R}^2 = 0.21$ for IJV ratiobIJV ratiobLinear regression analysisAccuracy of IJV in predicting CVP < 10Linear regression analysisAccuracy of IJV in predicting CVP < 8IJV ratiobIntra and inter observer $Accuracy of IJV$ in predicting CVP < 8ByonIJV ratiobIntra and inter observer 0.89)IJV ratiobIntra and inter observer $Accuracy of IJV$ in predicting CVP < 8ByonIJV ratiobInter-rater reliability 0.96)ROC curves 0.96) 0.96) 0.96)ROC curves 0.96) 0.96) 0.96)AP-IJVInter-rater reliability 0.96) 0.96)ROC curves 0.96) 0.96) 0.96)AP-IJVInter-rater reliabilityCorrelation of CVP and IJV supineIJV area*Correlation between 1.07 interclass correlation coefficientdecubitus and respiratorybetween the 2 observers = 0.92ocycle)AP-IJVROC curvesAP-IJVROC curvesSignificant correlation of anterior-person correlationpeterior RIJV with CVPAP-IJVROC curvesSignificant correlation of anterior-peterson correlation $0.83 (95% CI = 0.70-0.90)$ IIV area*ROC curves $0.83 (95% CI = 0.76-0.97)$ Parson correlation $0.83 (95% CI = 0.70-0.90)$ IIV area*ROC curves $0.83 (95% CI = 0.76-0.97)$ Parson correlationNo significant correlation between<	Target population US measures Outcome Results 44 adult IJV ratio ^b ROC curves R ² = 0.21 for IJV ratio ^b spontaneously Linear regression analysis Accuracy of IJV in predicting CVP < 10 breathing patients nmHg: AUC = 0.56 (95% CI = 0.65- 44 adult IJV ratio ^b Intra and inter observer Accuracy of IJV in predicting CVP < 8 spontaneously IJV ratio ^b Intra and inter observer Accuracy of IJV in predicting CVP < 8 spontaneously IJV ratio ^b ROC curves 0.68) 0.69 spontaneously IJV ratio ^b ROC curves 0.66 0.72- 34 adult AP-IJV Inter-rater reliability Correlation of CVP and IJV supine breathing patients Correlation between position and at the end of Expiration and breathing patients IJV area [*] Correlation between 0.96) 44 adult AP-IJV Inter-rater reliability Correlation of CVP and IJV supine breathing patients AP-IJV Intervalence 0.86) 0.69 44 adult AP-IJV RoC curves	Study design Target population US measures Outcome Results Results Cross- 44 adult IJV ratio [®] ROC curves R [*] = 0.21 for IJV ratio [®] ROP < 10 spontaneously spontaneously Innear regression analysis Recurasy of IJV in predicing CVP < 10 prospective 44 adult IJV ratio [®] ROC curves 8.99 Prospective 3 pontaneously Meathing patients ROC curves 0.89 Prospective 44 adult IJV ratio [®] ROC curves 0.90 Prospective 3 adult Intra and inter observational spontaneously 0.90 Prospective 34 adult IJV rata [®] Correlation between 0.90 0.90 Prospective 34 adult AP-IJV Inter adult resolud IJV IJV area [®] 0.90 0.90 Prospective 34 adult AP-IJV Inter adult resolud tIV 10 0.90 Prospective 34 adult AP-IJV Inter adult resolud tIV 10 0.90 Prospective 34 adult <	Conclusion Poorly correlation Moderate validity	Inter and intra-rater reliability moderate IJV ratio ^b accurately estimates CVP = 8 mmHg	Reliability excellent If AP-JJV diameter < 7 mm then CVP $< 10 \text{ cmH}_2\text{O}$	Significant correlation and validity	Intra- and inter-rater reliability very good
Outcome ROC curves Linear regression analysis Intra and inter observer agreement (Bland-Altman plots) ROC curves Inter-rater reliability Correlation between CVP and ultrasound IJV measures (in several decubitus and respiratory cycle) ROC curves Pearson correlation Pearson correlation Pearson correlation Pearson correlation Pearson correlation	US measures Outcome IJV ratio ^b ROC curves IJV ratio ^b ROC curves IJV ratio ^b Intra and inter observer agreement (Bland-Altman plots) ROC curves AP-IJV Inter-rater reliability IJV area ^c Correlation between AP-IJV Inter-rater reliability IJV area ^c Correlation between AP-IJV ROC curves IJV area ^c Correlation between IJV area ^c RoC curves Reliability (inter-intra rater) Pearson correlation	Target populationUS measuresOutcome44 adultIJV ratio ^b ROC curvesspontaneouslyIJV ratio ^b ROC curvesbreathing patientsLinear regression analysis44 adultIJV ratio ^b Intra and inter observeragreement (Bland-Altmanagreement (Bland-Altmanbreathing patientsROC curves34 adultAP-IJVInter and inter observerspontaneouslyIJV area ^c Correlation betweenbreathing patientsIJV area ^c Correlation between44 adultAP-IJVROC curvesspontaneouslyIJV area ^c Correlation betweenbreathing patientsAP-IJVROC curvesspontaneouslyIJV area ^c Correlation betweenbreathing patientsAP-IJVROC curvesspontaneouslyIJV area ^c Pearson correlationbreathing patientsPearson correlationbreathing patientsROC curvesspontaneouslyIJV area ^c Reliability (inter-intrabreathing patientsPearson correlationbreathing patient	Study designTarget populationUS measuresOutcomeCross-44 adultJJV ratio ^b ROC curvessectionalspontaneouslyProspective44 adultProspective44 adultJJV ratio ^b Intra and inter observerobservationalspontaneouslyProspective34 adultProspective34 adultAP-IJVInteran regression analysisProspective34 adultAP-IJVIntera negression analysisProspective34 adultAP-IJVIntera and inter observerobservationalspontaneouslyJJV area ⁶ Correlation betweenbreathing patientsAP-IJVInter-rater reliabilityobservationalspontaneouslyJJV area ⁶ Correlation betweenbreathing patientsAP-IJVROC curvesspontaneouslyJJV area ⁶ Correlation betweenbreathing patientsAP-IJVROC curvesspontaneouslyAP-IJVROC curvesspontaneouslyAP-IJVROC curvesbreathing patientsAP-IJVROC curvesspontaneouslyAP-IJVROC curvesbreathing patientsspontaneouslycycle)breathing patientsAP-IJVROC curvesspontaneouslyAP-IJVROC curvesbreathing patientsspontaneouslyrater)breathing patientsPearson correlationbreathing patientsrater)rater)breathing patientsspontaneouslycorrelationPearson correlation <t< td=""><td>Results R² = 0.21 for IJV ratio^b Accuracy of IJV in predicting CVP < 10 mmHg: AUC = 0.76 (95% CI = 0.65– 0.89)</td><td>Accuracy of IJV in predicting CVP < 8 mmHg: AUC = 0.84 (95% CI = 0.72– 0.96)</td><td>Correlation of CVP and IJV supine position and at the end of Expiration and IJV area^c: $r = 0.82$ and 0.69 IJV interclass correlation coefficient between the 2 observers = 0.92</td><td>Significant correlation of anterior- posterior RIJV with CVP Accuracy of RIJV in predicting CVP, for overvolumed AUC = 0.73 (95% CI = 0.59–0.86), for undervolumed AUC = 0.83 (95% CI = 0.70–0.96)</td><td>tracy of RJJV area (with Valsalva) edicting high RAP (> 12 mmHg): = 0.86 (95% CI = 0.75-0.97) igniffcant correlation between ng RAP and RJJV CSA (r = 0.14) ' area: ICC intra = 0.88; ICC inter</td></t<>	Results R ² = 0.21 for IJV ratio ^b Accuracy of IJV in predicting CVP < 10 mmHg: AUC = 0.76 (95% CI = 0.65– 0.89)	Accuracy of IJV in predicting CVP < 8 mmHg: AUC = 0.84 (95% CI = 0.72– 0.96)	Correlation of CVP and IJV supine position and at the end of Expiration and IJV area ^c : $r = 0.82$ and 0.69 IJV interclass correlation coefficient between the 2 observers = 0.92	Significant correlation of anterior- posterior RIJV with CVP Accuracy of RIJV in predicting CVP, for overvolumed AUC = 0.73 (95% CI = 0.59–0.86), for undervolumed AUC = 0.83 (95% CI = 0.70–0.96)	tracy of RJJV area (with Valsalva) edicting high RAP (> 12 mmHg): = 0.86 (95% CI = 0.75-0.97) igniffcant correlation between ng RAP and RJJV CSA (r = 0.14) ' area: ICC intra = 0.88; ICC inter
	US measures IJV ratio ^b IJV ratio ^b AP-IJV IJV area ^c IJV area ^c IJV area ^c	Target populationUS measures44 adultIJV ratiobspontaneouslyIJV ratiobbreathing patientsIJV ratiob44 adultIJV ratiobspontaneouslyIJV ratiobbreathing patientsAP-IJVspontaneouslyIJV areacbreathing patientsAP-IJVspontaneouslyIJV areacbreathing patientsAP-IJV67 adultAP-IJVbreathing patientsSpontaneouslybreathing patientsAP-IJVbreathing patientsAP-IJV	Study designTarget populationUS measuresCross-44 adultIJV ratiobsectionalspontaneouslyIJV ratiobbreathing patients44 adultIJV ratiobProspective44 adultIJV ratiobobservationalspontaneouslyIJV ratiobprospective34 adultAP-IJVposervationalspontaneouslyIJV area ^c breathing patientsAP-IJVposervationalspontaneouslyIJV area ^c breathing patientsfor adultAP-IJVobservationalspontaneouslyIJV area ^c breathing patientsfor adultAP-IJVspontaneouslybreathing patientsfor adultbreathing patientsfor adultfor adultbreathing patientsfor adultfor adultbreathing patientsfor adultfor adult<	Outcome ROC curves Linear regression analysis	Intra and inter observer agreement (Bland-Altman plots) ROC curves	Inter-rater reliability Correlation between CVP and ultrasound IJV measures (in several decubitus and respiratory cycle)	ROC curves Pearson correlation	ROC curves Reliability (inter-intra rater) Pearson correlation

8

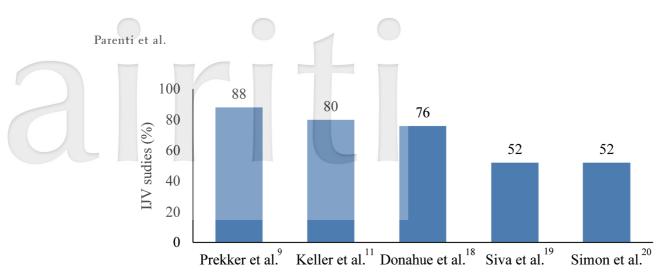


Fig. 2. Comparison of quality of reporting among studies on internal jugular vein (IJV) (Standards for Reporting of Diagnostic Accuracy [STARD] results). The vertical axis shows the percentage of items from STARD score met by each study according to the judgement of three researchers who checked each report using the STARD tool.

Table 2. Quality Assessment of Diagnostic Accuracy Studies-2 results

		Risk o	of bias	Applicability concerns			
Study	Patient selection	Index test	Reference standard	Flow and timing	Patient selection	Index test	Reference standard
Prekker et al., 2013 ⁹	HR	LR	HR	LR	LR	LR	LR
Keller et al., 2009 ¹¹	LR	LR	HR	LR	LR	LR	LR
Donahue et al., 2009 ¹⁸	LR	UR	HR	LR	LR	LR	LR
Siva et al., 2012 ¹⁹	UR	UR	LR	LR	LR	LR	LR
Simon et al., 2010 ²⁰	LR	LR	HR	LR	LR	HR	HR

HR: high risk; LR: low risk; UR: unknown risk.

Table 3. C	Comparison	of internal	jugular	vein	ultrasound	measures	effectiveness ^a
------------	------------	-------------	---------	------	------------	----------	----------------------------

	AP-IJV	IJV ratio ^b	IJV area ^c
Reliability			
Inter-rater	18 ICC = 0.92		18,20 ICC = 0.92–0.93
Reliability			
Intra-rater			20 ICC = 0.88
Correlation with CVP	18 r = 0.82	${}^{9}R^{2} = 0.21$	$^{18}r = 0.69$
Validity in predicting	19 AUC = 0.73 (95% CI = 0.59-	9 AUC = 0.76 (95% CI = 0.65-	20 AUC = 0.86 (95% CI = 0.75-
CVP or overvolume or	0.86)	0.89)	0.97)
undervolume ^d	19 AUC = 0.83 (95% CI = 0.70-	11 AUC = 0.84 (95% CI = 0.72-	
	0.96)	0.96)	

AP-IJV: anterior-posterior of internal jugular vein; AUC: areas under the receiver operator characteristic curves; CI: confidence interval; CVP: central venous pressure; ICC: intraclass correlation coefficient; IJV: internal jugular vein.

^aThe numbers near each value are the studies' reference number which report the variables shown in the table.

^bThe IJV ratio: IJV maximum transversal/IJV maximum longitudinal.

°The IJV area: maximal area in transversal section.

^dThe authors tested the IJV's validity in predicting CVP using several cut-off: CVP < or > 10 mmHg; CVP < or > 12 mmHg; < or > 8 mmHg. In particular the AP-IJV has been tested for undervolume (AUC = 0.83) and overvolume (AUC = 0.73);¹⁹ the IJV ratio has been tested for CVP < 10 mmHg (AUC = 0.76) and CVP < 8 mmHg (AUC = 0.84);^{9,11} the IJV area for CVP > 12 mmHg (AUC = 0.86).²⁰

accuracy of IJV in predicting the CVP (Table 1), it is not possible to combine their results using a forest plot method.

Even though the studies included in the systematic review showed a moderate-good quality in reporting, especially according to QUADAS-2 guidelines.

Several limitations should be noted in the results of this review.

Firstly, a very small number of patients was enrolled in all the studies collected and secondly there was significant heterogeneity among patient populations, inclusion and exclusion criteria, design, and statistical methodology employed in each study: this could be a very important limitation in terms of reaching conclusions from this review.

Moreover, only few studies supported the findings and conclusions on the AP-IJV and IJV area.

Finally, because there are very few data on the reliability of the IJV ultrasound measurements and there could be a great operator-dependent variability, we should be very cautious before using these US indexes in clinical practice.

On the other hand, this systematic review is original because for the first time, data on the role of IJV in fluid management in critically ill patients has been collected. Moreover, to our knowledge, this is the first systematic review on the reliability of ultrasound measures of IJV. Finally, there are no existing reviews or meta-analyses on the comparison of performance of these ultrasound measures.

Although recent literature^{4,24,25} suggests that CVP measurements do not accurately predict volume responsiveness, many International Society of Emergency and Critical Care suggest to use the CVP to manage the patients in shock^{26,27} and the CVP remains the most frequently used variable to guide fluid resuscitation in critically ill patients.²⁸

Moreover, many studies used CVP as gold standard to compare other indices to predict volume responsiveness.

Finally, according to De Backer and Vincent's opinion, the CVP values provide important information about the cardiocirculatory status of the patient and should not be abandoned.²⁹

For these reasons, we think that our findings on the effectiveness of IJV as a surrogate of CVP could impact the actual clinical practice; as they support the role of ultrasound to guide clinical management of patient in shock³ and support further research on new ultrasound measures as AP-IJV which could be a useful, fast, and safe tool to provide rapid fluid resuscitation early in the course of shock. The IJV ultrasound examination could be used in several settings by the emergency department physician, specifically when the IVC ultrasound method is not feasible because of poor acoustic windows (obesity, abdominal air interposition, surgical wounds).

Moreover, both IJV and IVC ultrasound measures are a very convenient method not requiring extensive training or expensive equipment.

However, the volaemic status is probably better assessed by an integrated sonographic approach with IVC and IJV, cardiac and pulmonary ultrasound.

In conclusion, the findings of this systematic review seem to suggest that the AP-IJV Dmax could be a good surrogate of CVP because of its good validity in predicting CVP but its correlation with CVP value among the studies collected is fair-moderate. Further studies should test its reliability.

Finally, the AP-IJV Dmax and its area could be a promising alternative to be confirmed by future research on their effectiveness.

Conflicts of Interest Statement

The authors declare that they have not had conflicts of interest within the 36 months of submission.

Funding

For this work, we have not received funding from any of the following organizations: National Institutes of Health (NIH), Wellcome Trust, or Howard Hughes Medical Institutes (HHMI). The authors have not received funding from any other European or Italian organizations.

References

- Michard F, Teboul JL. Predicting fluid responsiveness in ICU patients: a critical analysis of the evidence. *Chest* 2002;121:2000-2008. doi:10.1378/chest.121.6.2000
- Bendjelid K, Romand JA. Fluid responsiveness in mechanically ventilated patients: a review of indices used in intensive care. *Intensive Care Med* 2003;29:352-360. doi:10.1007/s00134-002-1615-9
- Schmidt GA, Koenig S, Mayo PH. Shock: ultrasound to guide diagnosis and therapy. *Chest* 2012;142:1042-1048. doi:10.1378/chest.12-1297
- 4. Marik PE, Baram M, Vahid B. Does central venous pressure predict fluid responsiveness? A systematic re-

Parenti et al.

view of the literature and the tale of seven mares. *Chest* 2008;134:172-178. doi:10.1378/chest.07-2331

- Zhang Z, Xu X, Ye S, Xu L. Ultrasonographic measurement of the respiratory variation in the inferior vena cava diameter is predictive of fluid responsiveness in critically ill patients: systematic review and meta-analysis. *Ultrasound Med Biol* 2014;40:845-853. doi:10.1016/j.ultrasmedbio.2013.12.010
- Dipti A, Soucy Z, Surana A, Chandra S. Role of inferior vena cava diameter in assessment of volume status: a meta-analysis. *Am J Emerg Med* 2012;30:1414-1419.e1. doi:10.1016/j.ajem.2011.10.017
- Barbier C, Loubières Y, Schmit C, et al. Respiratory changes in inferior vena cava diameter are helpful in predicting fluid responsiveness in ventilated septic patients. *Intensive Care Med* 2004;30:1740-1746. doi:10.1007/s00134-004-2259-8
- Feissel M, Michard F, Faller JP, Teboul JL. The respiratory variation in inferior vena cava diameter as a guide to fluid therapy. *Intensive Care Med* 2004;30:1834-1837. doi:10.1007/s00134-004-2233-5
- Prekker ME, Scott NL, Hart D, Sprenkle MD, Leatherman JW. Point-of-care ultrasound to estimate central venous pressure: a comparison of three techniques. *Crit Care Med* 2013;41:833-841. doi:10.1097/CCM.0b013e31827466b7
- Deol GR, Collett N, Ashby A, Schmidt GA. Ultrasound accurately reflects the jugular venous examination but underestimates central venous pressure. *Chest* 2011;139:95-100. doi:10.1378/chest.10-1301
- Keller AS, Melamed R, Malinchoc M, John R, Tierney DM, Gajic O. Diagnostic accuracy of a simple ultrasound measurement to estimate central venous pressure in spontaneously breathing, critically ill patients. *J Hosp Med* 2009;4:350-355. doi:10.1002/jhm.503
- Nagdev AD, Merchant RC, Tirado-Gonzalez A, Sisson CA, Murphy MC. Emergency department bedside ultrasonographic measurement of the caval index for noninvasive determination of low central venous pressure. Ann Emerg Med 2010;55:290-295. doi:10.1016/ j.annemergmed.2009.04.021
- Kircher BJ, Himelman RB, Schiller NB. Noninvasive estimation of right atrial pressure from the inspiratory collapse of the inferior vena cava. *Am J Cardiol* 1990;66:493-496. doi:10.1016/0002-9149(90)90711-9
- Brennan JM, Blair JE, Goonewardena S, et al. Reappraisal of the use of inferior vena cava for estimating right atrial pressure. *J Am Soc Echocardiogr* 2007;20:857-861. doi:10.1016/j.echo.2007.01.005
- 15. Simonson JS, Schiller BN. Sonospirometry: a new method for noninvasive estimation of mean right atrial pressure based on two-dimensional echographic measurements of the inferior vena cava during measured inspiration.

J Am Coll Cardiol 1988;11:557-564. doi:10.1016/0735-1097(88)91531-8

- Akkaya A, Yesilaras M, Aksay E, Sever M, Atilla OD. The interrater reliability of ultrasound imaging of the inferior vena cava performed by emergency residents. *Am J Emerg Med* 2013;31:1509-1511. doi:10.1016/j.ajem.2013.07.006
- Saul T, Lewiss RE, Langsfeld A, Radeos MS, Del Rios M. Inter-rater reliability of sonographic measurements of the inferior vena cava. *J Emerg Med* 2012;42:600-605. doi:10.1016/j.jemermed.2011.05.095
- Donahue SP, Wood JP, Patel BM, Quinn JV. Correlation of sonographic measurements of the internal jugular vein with central venous pressure. *Am J Emerg Med* 2009;27:851-855. doi:10.1016/j.ajem.2008.06.005
- Siva B, Hunt A, Boudville N. The sensitivity and specificity of ultrasound estimation of central venous pressure using the internal jugular vein. *J Crit Care* 2012;27:315. e7-315.e11. doi:10.1016/j.jcrc.2011.09.008
- 20. Simon MA, Kliner DE, Girod JP, Moguillansky D, Villanueva FS, Pacella JJ. Detection of elevated right atrial pressure using a simple bedside ultrasound measure. *Am Heart J* 2010;159:421-427. doi:10.1016/j.ahj.2010.01.004
- 21. Liberati A, Altman DG, Tetzlaff J, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. *BMJ* 2009;339:b2700. doi:10.1136/bmj.b2700
- Bossuyt PM, Reitsma JB, Bruns DE, et al. The STARD statement for reporting studies of diagnostic accuracy: explanation and elaboration. *Ann Intern Med* 2003;138:W1-W12. doi:10.7326/0003-4819-138-1-200301070-00012-w1
- 23. Whiting PF, Rutjes AWS, Westwood ME, et al; QUA-DAS-2 Group. QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. *Ann Intern Med* 2011;155:529-536. doi:10.7326/0003-4819-155-8-201110180-00009
- 24. Kumar A, Anel R, Bunnell E, et al. Pulmonary artery occlusion pressure and central venous pressure fail to predict ventricular filling volume, cardiac performance, or the response to volume infusion in normal subjects. *Crit Care Med* 2004;32:691-699. doi:10.1097/01. CCM.0000114996.68110.C9
- Magder S, Bafaqeeh F. The clinical role of central venous pressure measurements. *J Intensive Care Med* 2007;22:44-51. doi:10.1177/0885066606295303
- Rhodes A, Evans L, Alhazzani W, et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock 2016. *Crit Care Med* 2017;45:486-552. doi:10.1097/CCM.00000000002255
- American College of Emergency Physicians. Emergency ultrasound guidelines. *Ann Emerg Med* 2009;53:550-570. doi:10.1016/j.annemergmed.2008.12.013

Reliability, Accuracy of a New Ultrasound Method

29. De Backer D, Vincent JL. Should we measure the central venous pressure to guide fluid management? Ten answers to 10 questions. *Crit Care* 2018;22:43. doi:10.1186/s13054-018-1959-3

Parenti et al.

Supplement 1. Literature search: strategy and criteria

The following key words and strategy were used for the literature search.

(1) One search was performed using PubMed

Search field title: ((jugular veins[mesh] OR "internal jugular vein") AND ultrasonography) AND (blood volume[mesh] OR "blood volume" OR "volume status" OR "volemic status" OR central venous pressure[Mesh] OR "central venous pressure"): 87 records.

(2) One search was performed using Web of Science

Search field title: Internal jugular vein AND (blood volume OR volume status OR volemic status OR central venous pressure): 117 records.

(3) One search using Scopus

Search field title: ((TITLE-ABS-KEY(internal jugular vein AND ultrasonography) AND TITLE-ABS-KEY(blood VOLUME))) OR ((TITLE-ABS-KEY(internal jugular vein AND ultrasonography) AND TI-TLE-ABS-KEY(central venous pressure))) OR ((TITLE-ABS-KEY(internal jugular vein AND ultrasonography) AND TITLE-ABS-KEY(volemic status))) OR ((TITLE-ABS-KEY(internal jugular vein AND ultrasonography) AND TITLE-ABS-KEY(volemic status))) OR ((TITLE-ABS-KEY(internal jugular vein AND ultrasonography) AND TITLE-ABS-KEY(volemic status))) OR ((TITLE-ABS-KEY(internal jugular vein AND ultrasonography)

(4) One search using Cochrane Library

Search field title: internal jugular vein ultrasound: 2 records.

A total of 322 records were selected at the end of this research.